← 返回Chapter Review 7导航

Chapter Review 7

弧度制与扇形、弓形面积 - 第七章综合练习卷

一、选择题(每题4分,共20分)

1.
\( 60^\circ \) 转换为弧度是()
A. \( \frac{\pi}{6} \) B. \( \frac{\pi}{4} \) C. \( \frac{\pi}{3} \) D. \( \frac{\pi}{2} \)
\( 60^\circ = 60 \times \frac{\pi}{180} = \frac{\pi}{3} \) rad
答案:C
2.
若圆的半径为 5 cm,圆心角为 \( \frac{\pi}{4} \) rad,则弧长为()
A. \( \frac{5\pi}{4} \) cm B. \( 5\pi \) cm C. \( \frac{4\pi}{5} \) cm D. \( \frac{\pi}{20} \) cm
弧长公式:l = rθ = 5 × (π/4) = 5π/4 cm
答案:A
3.
扇形半径为 3 cm,面积为 \( \frac{9\pi}{4} \) cm²,则圆心角为()
A. \( \frac{\pi}{4} \) rad B. \( \frac{\pi}{2} \) rad C. \( \pi \) rad D. \( \frac{3\pi}{4} \) rad
扇形面积公式:A = (1/2)r²θ
变形:θ = 2A/r² = 2 × (9π/4) / 9 = (9π/2) / 9 = π/2 rad
答案:B
4.
弓形对应的圆心角为 \( \frac{\pi}{2} \) rad,半径为 4 cm,则弓形面积为()
A. (8π - 8) cm² B. (4π - 8) cm² C. (2π - 4) cm² D. (8 - 4π) cm²
弓形面积公式:A = (1/2)r²(θ - sin θ)
= (1/2)×16×(π/2 - sin(π/2)) = 8×(π/2 - 1) = 4π - 8 cm²
答案:B
5.
若扇形周长为 10 cm,半径为 3 cm,则扇形面积为()
A. 3 cm² B. 6 cm² C. 9 cm² D. 12 cm²
扇形周长 = 2r + l = 10 cm
l = 10 - 6 = 4 cm
θ = l/r = 4/3 rad
面积 A = (1/2)r²θ = (1/2)×9×(4/3) = (9/2)×(4/3) = 6 cm²
答案:B

二、填空题(每题5分,共20分)

6.
\( \frac{3\pi}{4} \) rad 转换为角度是______°。
\( \frac{3\pi}{4} \times \frac{180^\circ}{\pi} = \frac{3 \times 180}{4} = 135^\circ \)
答案:135
7.
圆的半径为 6 cm,弧长为 4π cm,则圆心角为______ rad。
θ = l/r = 4π/6 = (2π/3) rad
答案:\( \frac{2\pi}{3} \)
8.
扇形半径为 2 cm,圆心角为 \( \frac{\pi}{3} \) rad,则扇形面积为______ cm²(结果保留 π)。
A = (1/2) × 2² × (π/3) = (1/2) × 4 × (π/3) = 2π/3 cm²
答案:\( \frac{2\pi}{3} \)
9.
弓形半径为 5 cm,圆心角为 \( \frac{\pi}{2} \) rad,则弓形面积为______ cm²(结果用含 π 的式子表示)。
A = (1/2) × 5² × (π/2 - sin(π/2)) = (25/2) × (π/2 - 1) = (25/2)(π/2 - 1)
答案:\( \frac{25}{2} \left( \frac{\pi}{2} - 1 \right) \)

三、解答题(共60分)

10.(10分)
已知扇形的圆心角为 120°,半径为 9 cm,求:
- 弧长(转换为弧度后计算);
- 扇形面积。
解:
120° = 120 × (π/180) = (2π/3) rad
弧长 l = rθ = 9 × (2π/3) = 6π cm
扇形面积 A = (1/2)r²θ = (1/2) × 81 × (2π/3) = (81/2) × (2π/3) = 27π cm²
答案:弧长 6π cm;扇形面积 27π cm²
11.(12分)
圆的半径为 8 cm,某扇形的弧长为 12 cm,求:
- 圆心角的弧度值;
- 扇形的面积;
- 扇形的周长。
解:
圆心角 θ = l/r = 12/8 = 3/2 rad
扇形面积 A = (1/2) × 8² × (3/2) = (1/2) × 64 × (3/2) = 32 × (3/2) = 48 cm²
扇形周长 = l + 2r = 12 + 16 = 28 cm
答案:圆心角 3/2 rad;扇形面积 48 cm²;扇形周长 28 cm
12.(14分)
如图,扇形 AOB 中,OA = OB = 10 cm,圆心角 ∠AOB = \( \frac{2\pi}{3} \) rad。
- 求弧 AB 的长度;
- 求扇形 AOB 的面积;
- 求弓形 AB 的面积(参考 sin \( \frac{2\pi}{3} = \frac{\sqrt{3}}{2} \))。
解:
弧 AB 的长度 l = rθ = 10 × (2π/3) = 20π/3 cm
扇形 AOB 面积 = (1/2) × 10² × (2π/3) = (50) × (2π/3) = 100π/3 cm²
三角形 AOB 面积 = (1/2) × 10² × sin(2π/3) = 50 × (√3/2) = 25√3 cm²
弓形 AB 面积 = 100π/3 - 25√3 cm²
答案:弧长 \( \frac{20\pi}{3} \) cm;扇形面积 \( \frac{100\pi}{3} \) cm²;弓形面积 \( \frac{100\pi}{3} - 25\sqrt{3} \) cm²
13.(12分)
扇形的周长为 24 cm,面积为 32 cm²,求扇形的半径和圆心角(单位:弧度)。
解:
设半径为 r,圆心角为 θ
周长:2r + rθ = 24
面积:(1/2)r²θ = 32

从面积公式:θ = 64/r²
代入周长:2r + r × (64/r²) = 24
2r + 64/r = 24
乘以 r:2r² + 64 = 24r
2r² - 24r + 64 = 0
r² - 12r + 32 = 0
(r - 4)(r - 8) = 0
r = 4 cm 或 r = 8 cm

当 r = 4 cm 时:θ = 64/16 = 4 rad
当 r = 8 cm 时:θ = 64/64 = 1 rad
答案:r = 4 cm, θ = 4 rad 或 r = 8 cm, θ = 1 rad
14.(12分)
一个圆形花坛的半径为 5 m,现要在花坛中划出一个扇形区域种植花卉,扇形的圆心角为 \( \frac{\pi}{2} \) rad。
- 求扇形区域的弧长和面积;
- 若每平方米花卉成本为 20 元,求种植该扇形花卉的总成本。
解:
弧长 l = rθ = 5 × (π/2) = 5π/2 m
面积 A = (1/2)r²θ = (1/2) × 25 × (π/2) = 25π/4 m²
总成本 = (25π/4) × 20 = 125π ≈ 392.7 元
答案:弧长 \( \frac{5\pi}{2} \) m;面积 \( \frac{25\pi}{4} \) m²;总成本 125π 元